Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Alexandr V. Yatsenko, ${ }^{\text {a }}$

Ksenia A. Paseshnichenko, ${ }^{\text {a }}$
Vladimir V. Chernyshev ${ }^{a}$ and Henk Schenk ${ }^{\text {b }}$
${ }^{\text {a }}$ Chemistry Department, Moscow State University, 119899 Moscow, Russia, and
${ }^{\text {b }}$ Laboratory for Crystallography, University of Amsterdam, Nieuwe Achtergracht 166, Amsterdam, 1018 WV, The Netherlands

Correspondence e-mail:
yatsenko@biocryst.phys.msu.su

Key indicators

Powder X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.045$
$w R$ factor $=0.060$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

1-[(2-Nitrophenyl)hydrazono]-1H-naphthalen-2-one (Pigment Orange 2) from powder data

The crystal structure of the title compound, $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$, has been determined from X-ray powder data. The molecule is slightly non-planar. The structure adopts a stacking arrangement, with the stacks extended along [001]. The AM1 calculations of the crystal electrostatic potential show that the crystal environment causes only a moderate (23%) increase in the molecular dipole moment of the title compound.

Comment

Azo derivatives of β-naphthols form a family of widely used dyes and pigments, and the title compound, (I), is a representative of this family.

(I)

All derivatives of 1-phenylazo-2-naphthol containing strong electron-acceptor substituents at the phenyl group are known to exist as hydrazone tautomers in solution (Koller \& Zollinger, 1970; Korewa \& Urbańska, 1972); this finding is in line with the results of crystallographic studies (Guggenberger \& Teufer, 1975; Whitaker, 1978). Calculations using density functional theory (DFT) for an isolated molecule of (I) show that the hydrazone form is $40 \mathrm{~kJ} \mathrm{~mol}^{-1}$ more stable than the azo form. These calculations also predict a slightly non-planar geometry for this molecule owing to repulsion between the O1 and O 2 atoms. In accordance with these predictions, the phenyl group in (I), as determined by the present study (Fig. 1), forms a dihedral angle of 13.7 (2) ${ }^{\circ}$ with the naphthalene residue. Neighbouring molecules within the stack are related by the 2_{1} screw axis, and the shortest intermolecular distances within the stack are 3.45 (1) \AA. Two short intermolecular contacts [C5-H5 ? O1 2.59 and $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 2$ $2.61 \AA$] are present in this structure. The $A M 1$-calculated molecular dipole moment of (I) increases under the effect of the crystal environment (Yatsenko \& Paseshnichenko, 2000) from 6.75 D for an isolated molecule to 8.27 D for a molecule within the crystal.

Experimental

The title compound, (I), was prepared according to the established procedure of Elbs et al. (1924).

Received 1 October 2001

Accepted 30 October 2001
Online 10 November 2001

Figure 1
A view of (I) with the atom-numbering scheme.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=293.28$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=15.036$ (5) \AA
$b=12.722$ (4) \AA
$c=7.042$ (3) \AA
$V=1347.1(8) \AA^{3}$
$Z=4$
$D_{x}=1.446 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation

Data collection

DRON-3M diffractometer (Burevestnik, Russia)
Specimen mounting: pressed as a thin layer in the specimen holder Specimen mounted in reflection mode

Refinement

$R_{p}=0.045$
$R_{\text {wp }}=0.060$
$R_{\text {exp }}=0.016$
$S=3.86$
$2 \theta_{\text {min }}=8.0,2 \theta_{\text {max }}=66.0^{\circ}$
Wavelength of incident radiation: 1.5418 A

Excluded region(s): 66.02-70.0
Profile function: split-type pseudoVoigt

Cell parameters from 46 reflections
$\theta=4.1-25.9^{\circ}$
$\mu=0.85 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Orange--red
Specimen shape: flat sheet
$25 \times 25 \times 2.0 \mathrm{~mm}$
Particle morphology: fibre-like needle

> Absorption correction: none
> $h=0 \rightarrow 10$
> $k=0 \rightarrow 8$
> $l=0 \rightarrow 4$
> $2 \theta_{\min }=8.0,2 \theta_{\max }=70.0^{\circ}$
> Increment in $2 \theta=0.02^{\circ}$

The orthorhombic cell dimensions of (I) were determined with TREOR90 (Werner et al., 1985) and refined to $M_{20}=18$ and $F_{30}=$ $27(0.017,61)$ using the first 46 peak positions. The initial molecular model was built with MOPAC7 (Stewart, 1993) on the AM1 level (Dewar et al., 1985). The position and orientation of the molecule was determined using the grid-search procedure (Chernyshev \& Schenk, 1998). The X-ray diffraction profile and the difference between the measured and calculated profiles after the Rietveld refinement are shown in Fig. 2; final $R_{B}=0.076$. All atoms were refined isotropically and were gathered together into groups with a common $U_{\text {iso }}$ parameter for each group. H atoms were placed in geometrically calculated positions and their isotropic displacement parameters were fixed. The planarity of the phenyl and nitro groups and of the

Figure 2
The Rietveld plot for (I) showing the observed and difference profiles. The reflection positions are shown above the difference profile.
naphthalene fragment was restrained. The anisotropy of diffractionline broadening was approximated by a quartic form in $h k l$ (Popa, 1998). The standard uncertainties obtained from the Rietveld refinement were corrected for the serial correlation effects (Bérar \& Lelann, 1991). The DFT calculations were performed using a program provided by Dr D. N. Laikov (Laikov, 1997). The details of calculations employing the crystal electrostatic potential have been reported elsewhere (Yatsenko \& Paseshnichenko, 2000).

Data collection: local program; cell refinement: LSPAID (Visser, 1986); program(s) used to solve structure: MRIA (Zlokazov \& Chernyshev, 1992); program(s) used to refine structure: MRIA; molecular graphics: PLUTON (Spek, 1992); software used to prepare material for publication: PARST (Nardelli, 1983).

This work has been supported by the Netherlands Organization for Scientific Research (NWO). AVY would like to thank ICDD for financial assistance (grant No. 93-05).

References

Bérar, J.-F. \& Lelann, P. (1991). J. Appl. Cryst. 24, 1-5.
Chernyshev, V. V. \& Schenk, H. (1998). Z. Kristallogr. 213, 1-3.
Dewar, M. J. S., Zoebish, E. G., Healy, E. F. \& Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902-3909.
Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.
Elbs, K., Hirschel, O., Wagner, F., Himmler, K., Türk, W., Heinrich, A. \& Lehmann, E. (1924). J. Prakt. Chem. 108, 209-233.
Guggenberger, L. J. \& Teufer, G. (1975). Acta Cryst. B31, 785-790.
Koller, S. \& Zollinger, H. (1970). Helv. Chim. Acta 53, 78-89.
Korewa, R. \& Urbańska, H. (1972). Rocz. Chem. 46, 2007-2019.
Laikov, D. N. (1997). Chem. Phys. Lett. 281, 151-156.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Popa, N. C. (1998). J. Appl. Cryst. 31, 176-180.
Spek, A. L. (1992). PLUTON92. University of Utrecht, The Netherlands. Stewart, J. J. P. (1993). MOPAC7.0. QCPE Program No. 455. Quantum Chemistry Program Exchange, Department of Chemistry, Indiana University, Bloomington, IN, USA.
Visser, J. W. (1986). Powder Diffr. 1, 66-76.
Werner, P.-E., Eriksson, L. \& Westdahl, M. (1985). J. Appl. Cryst. 18, 367-370. Whitaker, A. (1978). Z. Kristallogr. 147, 99-102.
Yatsenko, A. V. \& Paseshnichenko, K. A. (2000). Chem. Phys. 262, 293-301. Zlokazov, V. B. \& Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447-451.

